
V"

DEPARTMENT OF THE AIR FORCE
HEADQUARTERS ELECTRONIC SYSTEMS CENTER (AFMC)

HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731-5000

JAN 3 5 nm

MEMORANDUM FOR LORAL FEDERAL SYSTEMS
ATTN: RICHARD HUGHES

FROM: ESC/ENS
5 Eglin Street
Bldg. 1704, Rm. 206
Hanscom AFB, MA 01731-2116

SUBJECT: Upgrade to Distribution Statement A

1 The STARS product, CDRL A014-015, "Integrating Cleanroom with Object Oriented
Methods for Reliable Software Development", is upgraded to Distribution Statement A

effective 29 Jan 96.

2. Please direct any questions you may have to the Jim Henslee at (617) 377-8563.

ROBERT LENCEWICZ
ESC CARDS Program Manager
Software Design Center

»OTMCM UaJfaaite

DISTRIBUTION STATEMENT UPGRADE

CDRL Number and Task Number: CDRL A014-015, Task IV02

Product Title and Brief Description (what it is and what it does): "Integrating
Cleanroom with Object Oriented Methods for Reliable Software Development"

The purpose of this paper is to 1) discuss why object-oriented and Cleanroom software
engineering techniques should be integrated, 2) outline the generic process for object-
oriented software development that was derived on STARS Task IA09, and comment on
relevant aspects of the mapping from the studied methods to each generic process activity,
and 3) discuss the shared leveraging of Cleanroom and object-oriented techniques, and how
the integration of these techniques might be leveraged to produce software of greater
reliability and reusability.

Date Delivered to the Program Office: 24 Jan 96

Reviewer's Name, Extension Number and Date of Review: Marcelle Nachef,
(617) 377-4918, 29 Jan 96

Intended Audience: Public conferences, trade shows, workshops, and
STC '96

Comments:

The STARS product, Integrating Cleanroom with Object Oriented Methods for Reliable
Software Development, previously under Distribution Statement C, is upgraded to
Distribution Statement A effective 29 Jan 96. This product is generic and does not apply
to specific defense articles and defense services. In accordance with Memorandum of
Agreement between ESC/PA and ESC/ENS concerning upgrades of STARS products to
Distribution A, the STARS program office at ESC/ENS has reviewed this product and has
determined that the information is unclassified, technically accurate, and suitable for public
release.

Approving Authority

//sofa
Date

Task/Subtask IV02.1
CDRL Sequence A014-015

23 January 1996

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE
SYSTEMS (STARS) PROGRAM

Technical Papers:
Integrating Cleanroom with Object Oriented Methods

For Reliable Software Development

Contract No. F19628-93-C-0129

Task IV01 - Megaprogramming Transition Support

Prepared for:

Electronic Systems Center
Air Force Materiel Command, USAF

Hanscom AFB, MA 01731-2116

19960611 173

Prepared by:

Loral Federal Systems
700 North Frederick Avenue

Gaithersburg, MD 20879

CLEARED FOR PUBLIC RELEASE, DISTRIBUTION IS UNLIMITED

Task/Subtask IV02.1
CDRL Sequence A014-015

23 January 1996

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE
SYSTEMS (STARS) PROGRAM

Technical Papers:
Integrating Cleanroom with Object Oriented Methods

For Reliable Software Development

Contract No. F19628-93-C-0129

Task IV01 - Megaprogramming Transition Support

Prepared for:

Electronic Systems Center
Air Force Materiel Command, USAF

Hanscom AFB, MA 01731-2116

Prepared by:

Loral Federal Systems
700 North Frederick Avenue

Gaithersburg, MD 20879

REPORT DOCUMENTION PAGE
Form Approved

OMBNo. 0704-0188

Pubic reporting burden tor tho collection ot information is estimated to average 1 hour per response, including ine lime lor reviewing instructions, searcning ousting aata sources, garnering and
maintaining the data needed, and completing and reviewing the coltecton ol information. Send comments regarding this burden estimate or any other aspect ot this collection ol intormalon,
including suggestions for reducing this burden to Washington Headquarters Services. Directorate tor Intormation Operations and Reports. 1215 Jefferson Davis Highway. Suite 1204. Arimgion.
VA 22202-4302. and to the Office d Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

1/23/96
3. REPORT TYPE AND DATES COVERED

Initial
4. TITLE AND SUBTITLE

Integrating Cleanroom with 00 Methods for Reliable
Software Development

6. AUTHOR(S)

William H. Ett, Loral Federal Systems

5. FUNDING NUMBERS

F19628-93-C-0129

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Loral Federal Systems
700 North Frederick Avenue
Gaithersburg, MD 20879

8. PERFORMING ORGANIZATION
REPORT NUMBER

A014-015

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Electronic Systems Center/ENS
Air Force Materiel Command, USAF
5 Eglin Street, Building 1704
Hanscom Air Force Base, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

N/A

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Cleared for Public Release, Distribution is Unlimited

13. ABSTRACT (Maximum 200 words)

120. DISTRIBUTION CODE

STARS Task IA09 was conceived to examine the potential complementary nature of the Cleanroom Engineering of
software and a representative set of the popular object-oriented methods being used to specify, design
and develop software systems. Both methods of softrware development support the software concepts of
abstraction, encapsulation, modularity and hierarchy. However, object-orientation as practiced over the
past few years has produced mixed results, whereas Cleanroom has a significant track record of producting
highly reliable systems, with extremely low after-delivery defect rates.

The study was based on the assumptions that 1) object-oriented methods support domain-specific
architecture-based reuse, 2) Cleanroom software development emphasizes process-driven software
development, and 3) object-oriented and Cleanroom ideas are both complementary and compatible.

The purpose of this paper is to 1) discuss why object-oriented and Cleanroom software engineering
techniques should be integrated, 2) outline the generic process for object-oriented software development
that was derived on STARS Task IA09, and comment on relevant aspects of the mapping from the studied
methods to each generic process activity, and 3) discuss the snared leveraging of Cleanroom and
object-oriented techniques, and how the integration of these techniques might be leveraged to
produce software of greater reliability and reusability.

14. SUBJECT TERMS

Cleanroom, Object-Oriented Techniques, Object-Oriented Methods,
Object-Orientation, Software Engineering

15 NUMBER OF PAGES

24
16. PRICE CODE

N/A
17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR

Title: Integrating Cleanroom with 00 Methods for Reliable Software Development
Presenter: William H. Ett
Track: Track 5, Cleanroom
Day: Wednesday, April 24, 1996, 1030-1100
Keywords: Cleanroom, Certification, Object-Orientation, Object-Oriented Analysis, Object-

Oriented Design, Object-Oriented Development, Method Integration
Abstract: Object-Orientation has shown much promise to support the building of systems from

large and small grained components. However, application of 00 methods have
produced mixed results in terms of the quality of software delivered and its
development costs. Cleanroom software engineering has a proven track record of
the development of reliable systems, and with little exception, within cost and
schedule constraints. The purpose of this paper is to discuss the need for
integrating aspects of Cleanroom with object-oriented methods, and how, based on
the analysis performed on STARS task IA09, the integration of both might be
leveraged to produce software that is not only reusable, but of better quality and
higher reliability, over currently practiced methods.

Integrating Cleanroom with OO Methods for
Reliable Software Development

Introduction

STARS Task IA09, hereinafter referred to as "the study," was conceived to
examine the potential complementary nature of the Cleanroom Engineering of
software and a representative set of the popular object-oriented methods being
used to specify, design, and develop software systems. Both methods of
software development support the software concepts of abstraction,
encapsulation, modularity, and hierarchy. Object-orientation as practiced over
the past few years, however, has produced mixed results, whereas Cleanroom
has a significant track record of producing highly reliable systems, with extremely
low after-delivery defect rates.

The study was based on the assumptions that 1) object-oriented (00) methods
support domain-specific, architecture-based reuse, 2) Cleanroom software
development emphasizes process-driven software development, and 3) object-
oriented and Cleanroom ideas are both complementary and compatible [Ett95].

The purpose of this paper is to: 1) discuss why object-oriented and Cleanroom
software engineering techniques should be integrated, 2) outline the generic
process for object-oriented software development that was derived on STARS
Task IA09, and comment on relevant aspects of the mapping from the studied
methods to each generic process activity, and 3) discuss the shared leveraging of
Cleanroom and object-oriented techniques, and how the integration of these
techniques might be leveraged to produce software of greater reliability and
reusability.

02/06/96 at 01:35 PM STC'96 Page 1

The paper is organized in three sections:

. Object-Orientation and Cleanroom - discusses what they are and why they
are worth integrating,

. Cleanroom and 00 Method Integration Investigation - discusses the
approach followed on IA09 to analyze how the 00 and Cleanroom methods
might be integrated and presents commentary from the mapping of 00 and
Cleanroom method activities to the appropriate activities of the IA09-
developed generic 00 process, and

. The Shared Leveraging of Cleanroom and 00 Techniques - discusses
possible areas for technique integration, where both methods may benefit,
and presents conclusions.

Object-Orientation and Cleanroom

Why Object-Oriented Development?

Object-oriented development is about analyzing, designing and implementing
systems that comprise collaborating objects, where each object encapsulates the
data and methods necessary to satisfy its processing requests. Object-
orientation emphasizes the specification of the external interfaces of objects, and
requires the practice of information hiding and the encapsulation of functions and
data that perform the work of the object. Objects provide a convenient concept in
which to think about the composition of systems. System composition through
objects requires thinking about the architecture for a system in terms of
assembling systems through the use of both large and fine grained components.
Viewing systems as a composition of collaborating objects also supports the idea
of developing not just reusable assets, but domain-specific solution architectures
for classes of problems, where architectures, as well as objects, become units of
system development and integration.

In practice, even though an enormous amount of software has been developed,
only a portion of it is recoverable from "mining and refining" efforts. As software
is developed in the future, and good software engineering techniques are
employed to define and develop robust software objects, we may one day build
up a sufficient quantity of software objects such that systems can be composed
from reusable components, and software development may become more of an
integration activity than one of development. One of the most important
contributions of 00 methods is the concept of developing reusable classes,
which through inheritance, may be specialized. This specializing of generalized
classes and their methods permits some methods to be inherited without
modification, and allows others to be specialized as necessary to satisfy unique
processing requirements not addressed by a parent class. It is the class concept
that is the driving force behind the composition of systems from reusable
components.

02/06/96 at 01:13 PM STC'96 Page 2

[Booch94] describes the underlying model (meta-model) upon which all object-
oriented methods are based. He identifies the major elements in this meta model
as the software techniques of abstraction, encapsulation, modularity, and
hierarchy. The minor elements of the [Booch94] meta-model are typing,
concurrency and persistence. These elements form the conceptual framework
for the development of classes that represent the behaviors and properties of an
object type and their integration into a system. [Booch94] also identifies three
categories of methods that are used to support system analysis and design: top-
down structured design, data-driven design, and object-oriented design. Top-
down structured design is algorithmic decomposition. Data-driven design derives
the structure of software systems by mapping system inputs to system outputs.

One of the most important characteristics of object-orientation is its focus on the
behaviors of the system we are to develop, and the behavior of its objects. It is
through this description of object behaviors, that we define the stimulus
sequences and responses involved in a system communicating with external
objects, and among communicating objects within the system.

The discipline called "object-oriented analysis" has recognized the importance of
understanding the behavior of the software systems and objects of which they are
to be composed. [Booch94], [Shlaer92], and [Jacobson92] all identify the need
for performing analysis of and developing models to describe the behavior of a
system. It is interesting to note that one of the most important aspects of
Cleanroom is the development of an implementation- and state-free behavioral
specification for a proposed system and each of its objects (black boxes).

Why Object-Orientation Alone Is Not Sufficient

Although object-orientation has evolved from work performed over three decades,
it is still evolving as a discipline. The 00 approach for specifying an object's
behavior can best be characterized as heuristic. Rather than rigorously
specifying the black-box behavior of a system and its objects, some 00
techniques permit the discovery of object behaviors into the design process
([Booch94], p. 252), ([Jacobson], p. 157).

A system specification may only be considered complete when the behavior a
system must exhibit and the transactions (scenarios) that support those
behaviors have been described, and when all system behaviors, their
transactions, and their supporting elements, have been verified against the
requirements for a system. Most 00 methods are not clear concerning the need
for documented requirements, against which a system will be verified and
validated. They have traded the concept of a specification for an "executable
specification model" or "executable prototypes." This is not necessarily bad, but
may be problematic since most 00 methods choose to discover requirements

02/06/96 at 01:13 PM STC'96 Page 3

(new system behaviors) past the analysis phase. This an open invitation to
requirements creep.

The most successful instances of 00 method application have been through
evolutionary software development. Evolutionary software development may
provide excellent results, given there is sufficient schedule and budget to support
that development. There are no effective measures to describe how good an
object-oriented developed system is, although metrics have been identified to
measure object-oriented development. The only real assurance one has that the
system works is through coverage testing. Testing systems on the basis of
crafted scenarios provides anecdotal evidence of system correctness. Testing
might better be performed from models that describe the operational use of a
system, and from which unbiased test scripts may be prepared. Further, testing
of systems developed in object-oriented programming languages is often difficult
[Perry90]. Strategies and techniques for testing software written using object-
oriented languages is still a subject for continued research, development, and
evaluation.

The object-oriented analysis and design methods that were studied (Booch,
Objectory, Shlaer-Mellor) require the development of models that describe the
machine-independent logical design, and the implementation-dependent design of
a proposed system.

For the most part, there are no real strategies for verifying and validating these
models to determine their completeness or consistency against stated
requirements, with the exception of Objectory [Jacobson92]. Two out of three of
the methods studied indicated that they expected requirements to grow and be
refined, as the models were developed and reviewed with system stakeholders.
When requirements grow, so do system behaviors. If system behaviors are not
properly defined before development, none of its stakeholders may know what
kind of system they will get, except through the continuous development of
prototypes to test and confirm system behaviors with its stakeholders and other
developers. The later these system behaviors are discovered in the development
cycle, the more costly they are to address.

Finally, until OO methods provide us with answers to the following questions, OO
methods alone are not sufficient to support systems development:

1. How much of the system's behavior do we need to understand before a
system may be designed?

2. How much does it cost us to learn system behaviors and requirements as we
design and develop systems and how can this learning be minimized?

3. Without a documented set of requirements for a system, how may we validate
that the system specification or specification model satisfies the requirements
for the system developed?

02/06/96 at 01:13 PM STC'96 Page 4

4. How may we certify the correctness of a system with respect to its proposed
use, such that we are satisfied that the system addresses the needs of its
users, on the basis of our knowledge of how each system user will use the
system?

Why Cleanroom?

The Cleanroom engineering of software employs established engineering
formalisms for the specification of software, that are founded in the mathematical
concept of functions. This mathematical foundation provides software
engineering with tools for verifying specifications and designs. A Cleanroom
black-box specification is a complete behavioral description, where the black box
is characterized by the transactions it supports, and each transaction is
completely described through the analysis of the sequence of all
stimulus/response pairs (transitions) formed to produce the transaction's result.

Cleanroom also emphasizes the concept of usage testing, where Markov models
are developed to describe how the users of a system will exercise it. The
resulting Markov model represents a usage model for the system and supports
the concept of statistical testing. Because statistical testing is employed,
Cleanroom can support software development under statistical quality control
[Cobb90].

Software is thoroughly specified and then designed and implemented as a
pipeline of small software increments. Each software object produced using
Cleanroom requires its developers to: 1) specify the black-box behavior of every
software object, 2) ensure there is sufficient and persistent data to ensure that
the software object can support the transactions it must process, 3) ensure that
the object encapsulates and maintains transaction history (stimulus history)
required for the object to process new transactions, 4) demonstrate that the
implementation of all behaviors are consistent with the black-box specification of
the object, and 5) show that the developed system will produce the required
results. Although this is not commonly understood and often mis-communicated,
one of the chief principles of the Cleanroom engineering of software is to define
and verify the correctness of system and system component behaviors.

Once a software increment is implemented, it must be certified against a model
that describes the operational use of a system. Random test cases may be
generated from this usage model to test each system increment, as well as the
final system [Whittaker93]. This certification of each software increment and the
final system defines the expected reliability for a system in terms of its mean time
to failure, as well as other certification statistics [Whittaker93]. These statistics
may be used as an indicator in analyzing the performance of the development
process [Poore95]. These statistics may also be used to support a project's or
organization's statistical process improvement initiative. Poor certification

02/06/96 at 01:13 PM STC'96 Page 5

statistics and testing failures usually indicate a problem that requires
investigating, e.g., the process is not being properly followed, process
adaptations are required, etc.

Another important aspect of Cleanroom is the development of verifiably correct
software. This process begins with verifying that the system-level black box
satisfies its stated requirements. It continues with the verification that design and
implementation of the system satisfies all defined black-box behaviors.
Cleanroom Software Engineering has a significant track record of successful
application compared with other software engineering methods [Hausler94].

Cleanroom box structure development is based on the same conceptual
foundation of every object-oriented method, i.e., abstraction, encapsulation,
modularity, and hierarchy [Hevner93].

Why Integrate the Techniques of Both?

There are some excellent ideas that have evolved from the practice of object-
orientation and of Cleanroom. 00 methods provide valuable techniques for
analyzing problem domains, both for a specific application and for a family of
applications. These methods also provide techniques for the design and
development of systems using reusable classes, where methods from a class
may be inherited by another and specialized as required to satisfy processing
needs. Cleanroom has produced proven techniques for (1) specifying the precise
behavior of a proposed system (2) validating system specifications against their
requirements, (3) verifying the correctness of the implementation of the external
and each internal box structure design, (4) modeling the behavior of the system
on the basis of the system's intended use, and (5) certifying the behavior of the
software increments with respect to its intended use. Although there are areas of
overlap between 00 methods and Cleanroom, several of Cleanroom's strengths
complement 00 methods. If one considers the questions presented in the
discussion of why 00 alone in not sufficient as a systems development method
from a Cleanroom perspective, the need for Cleanroom and 00 integration
becomes clear. Cleanroom has answers to these questions.

How much of the system's behavior do we need to understand before a
system may be designed? The Cleanroom answer to this question is to
iteratively develop a system-level black-box specification from existing and
discovered system requirements, and other requirements sources, until the
specification precisely describes the behavior that a proposed system must
exhibit. Black box specification work is often supported by the development of
prototypes to help system specifiers better understand and accurately define
system and user requirements. One of the purposes of any analysis phase is to
identify and synthesize the requirements for a system and engineer them into a
precise behavioral specification or model. The goal of any specification is to be

02/06/96 at 01:13 PM STC'96 Page 6

complete, so that once design work begins in earnest, developers will discover
few new system behaviors that the system must support.

How much does it cost us to learn system behaviors and requirements as
we design and develop systems, and how can this learning be minimized?
The Cleanroom answer to this question is to minimize the learning of system
behaviors during development, by performing proper analysis up front. It has
been shown that when missing requirements are discovered well into system
design and development, they are more expensive to address. Will preparing a
system-level black-box specification guarantee that missing requirements will not
be found? Of course not - but, one can be almost certain that there will be fewer
surprises during development with a system-level black-box specification than
without.

Without a documented set of requirements for a system, how may we
validate that the system specification or specification model satisfies the
requirements for the system developed? The Cleanroom answer to this
question is that we must prepare a system-level black-box specification that
precisely describes the behavior the system is to exhibit. A system-level black-
box specification must include a validation argument that describes the
traceability of every system stimulus and response to a system requirement and
its source.

How may we certify the correctness of a system with respect to its
proposed use, such that we are satisfied that the system addresses the
needs of its users, on the basis of our knowledge of how each system user
will use the system? The Cleanroom answer to this question is to prepare a
model that describes how the proposed system is intended to be used by all of its
external users. The resulting usage model supports system certification and the
estimation of the system's reliability with respect to the system's intended use.
Certifying a system in this way directly addresses the issue of whether the system
addresses the needs of its users, given that the usage model accurately
represents how users will use the system.

Objectory and Booch described the importance of collecting measurements and
data to support the periodic process improvement. All three methods could
benefit from examining the Cleanroom process. The Cleanroom process defines
protocols for the review of each process product. Cleanroom also requires that a
periodic process review be performed on the application of Cleanroom techniques
and their performance results. Cleanroom certification provides natural
measurements of software product quality in terms of errors discovered and
software reliability. Cleanroom process and certification ideas may be combined
with 00 process performance measures to define and instrument a process for
performing each OO method.

02/06/96 at 01:13 PM STC'96 Page 7

Cleanroom and 00 Method Integration Investigation

Study Approach

Many studies comparing the tools and techniques of the studied 00 methods
have been published. To provide a new dimension to this body of work, the focus
of the study was placed on comparing the Booch, Objectory, Shlaer-Mellor, and
Cleanroom methods from a process perspective.

To ensure that the documentation baseline that described each method to be
studied was accurate, all three 00 method authors were contacted. Each
method author cited the books, technical reports and papers that accurately
described their method. After examining the documentation baseline for each
method, a composite of the phases, activities, and work products were drawn
from to define a generic process to support the study. The generic process was
used to examine the life cycle coverage of the selected methods. This composite
view defined a fairly complete system development life cycle definition that was
suitable for supporting the study's method analysis and mapping efforts.

After the documentation baseline was established and the generic process was
defined, each method was described in terms of its phases, activities and work
products. These method descriptions were used to support the mapping and
analysis work of the study. This work resulted in the following artifacts, which are
included in [Ett95]:

. Documentation of each method that includes a glossary, and a description of
the phases, activities, and work products of the method.

. A mapping of the phases and activities of each studied 00 method to
Cleanroom. Commentary regarding potential Cleanroom integration with each
method. An example page is included in Appendix A of the paper.

. A mapping of the phases and activities of each studied method to the generic
OO process. Each mapping of a method's activities and work products was
examined as possible candidate techniques that could be employed to tailor
an instance of the generic 00 process. Commentary on the mapping from a
method's activity and work products to and support for a generic 00 process
activity was also prepared. An example page is included in Appendix B of the
paper.

The commentary from [Ett95] associated with the mapping of 00 and Cleanroom
method activities identifies areas that should be closely examined, when
considering integrating object-oriented methods and Cleanroom to prepare an
integrated process. Each activity from the generic process is identified, along
with the mapping discussion from [Ett95].

Commentary Regarding Method Applicability to Generic Process Activities

02/06/96 at 01:13 PM STC'96 Page 8

1. Concept Definition,- Generic Process Activities and Commentary

1.1
Mission Statement

There is nothing object-oriented about concept definition.
It is an important step, however, in establishing the
context for systems analysis.

Booch's "Vision of a Project's Requirements" and
Objectory and Cleanroom early requirements statements
all address concept definition.

2. System Analysis - Generic Process Activities and Commentary

2.1
Analyze

Problem Domain

Booch, Objectory, and Shlaer-Mellor all have work
products that describe the environment in which a
system will operate and the domain objects of that
environment.

Objectory employs a particularly popular approach for
describing "use cases" from which domain objects are
identified.

2.2
Analyze

Requirements

Objectory's Use-Case Model is thorough, formal, and in
the customer's language. It may be supported by
Booch micro-process activities for exploratory prototyping.

2.3
Plan Specification and

Design Activities

Although all the methods address planning, Objectory
provides the most comprehensive planning
recommendations. Objectory relies on the completion
of Use-Case analysis to scope the remaining analysis
and design effort.

A risk assessment should be incorporated in the
planning process, as does Booch.

2.4
Review Analysis Phase

Work Products

Booch, Objectory, and Shlaer-Mellor define criteria for
examining their analysis products.

Objectory's review criteria are the most comprehensive of
the three processes for reviewing the results of a
requirements analysis.

3. System Specification Generic Process Activities and Commentary

02/06/96 at 01:13 PM STC'96 Page 9

3.1
Specify User

Interface

3.2
Describe Usage

Scenarios

3.3
Specify Software System

3.4
Review Specification
Phase Work Products

/. Early specification of the user interface is extremely
important. Objectory addresses user interface design in
requirements analysis, and Cleanroom does so in top-

level black-box specification.

Booch also suggests that executable prototypes be
developed to demonstrate interface concepts to users.

Booch, Objectory, and Cleanroom call for the development
of models that describe usage scenarios.

The Cleanroom Usage Model is formalized as a Markov

chain of usage states and transition probabilities between

states.

Either Objectory Use Cases or a Shlaer-Mellor system-
level Object State Model could be used to prepare a
Cleanroom Markov Usage Model. As a well-understood
formalism, a Markov chain usage model can be analyzed
to optimize development and testing resources and can
be used as a test-case generator.

The Objectory Use Case Model and the Cleanroom Box
Structure Specification together are excellent (and
complementary) approaches for specifying the external
behavior of a system. An Objectory Use Case Model
may be formalized in a Cleanroom black-box functional
(mathematical) specification that maps sequences of
external stimuli to external responses.

Both Objectory and Cleanroom present criteria for
reviewing the correctness, consistency, and completeness

of specifications.

Booch also identifies the importance of validating aspects
of the specification for a system by conducting scenario

walkthroughs.

02/06/96 at 01:13 PM STC'96 Page 10

4. System Design Generic Process Activities and Commentary

4.1
Identify Logical System

Objects

4.2
Prepare

Implementation-Independent
Software Design

4.3
Develop Software

Architecture

All methods have activities for modeling logical software
objects and their characteristics. Notable approaches to
this activity are Objectory, which requires objects to be
identified as to role (i.e., interface object, entity object, or
control object), and Cleanroom, in which internal state
objects are the explicit encapsulation of an object's
external stimulus history.

All methods have techniques for implementation-

independent logical design.

Cleanroom further enforces the mathematical properties
of referential transparency and functional verifiability.

Any of the methods would be reinforced by verification as
a Cleanroom Box Structure Design.

All the methods provide for defining the software
architecture. All have formalisms for depicting
architectural structures and their relationships.

Booch class diagrams, Objectory subsystem/package
diagrams and Shlaer-Mellor Class Diagrams and Structure
Charts appear equally useful for supporting architectural
representations.

Cleanroom architecture is represented as the top-level
clear box at the highest level and the full box structure
hierarchy in complete form. A Cleanroom architectural
description has the merit of functional (mathematical)
verifiability of designs to specifications throughout the

hierarchy.

Without further study and the comparison of actual
examples, it is difficult to recommend any one of the
approaches over others.

02/06/96 at 01:13 PM STC'96 Page 11

4. System Design Generic Process Activities and Commentary (Continued)

4.4
Specify

Subsystems

A Cleanroom black-box specification completely specifies
an object's external behavior. In an architecture of
communicating objects, black-box specification of objects
(in this case, subsystems) ensures the mathematical
principle of referential transparency in system design.

Referential Transparency - an example: Once an entity is

defined as the number "8," it may be implemented as
(6 + 2), (7 + 1), (3 + 1 + 4), or any other equivalent

representation of the number "8" without regard to how

the number "8" will be used.

4.5
Review of Design

Phase Work
Products

All of the methods provide some guidance for the review of
the implementation-independent design and the system

architecture.

Of these, Objectory, Shlaer-Mellor, and Cleanroom have
well -documented review criteria.

5. System Implementation Generic Process Activities and
Mapping Commentary

5.1
Plan Increments

5.2
Develop Increment

Booch, Objectory, and Cleanroom all address increment

planning.

Of these, the Objectory and Cleanroom methods are

described most fully.

Objectory and Cleanroom offer the most cohesive
approaches to designing and implementing software
increments. Shlaer-Mellor uses a "translation" approach,
where generic mechanisms and structures in the
architecture (referred to as "archetypes") are completed

for the application.

Overall, Cleanroom appears to minimize the risk of defects
in implementation, and Shlaer-Mellor appears to

maximize the potential for reuse.

02/06/96 at 01:13 PM STC'96 Page 12

5. System Implementation Generic Process Activities and Mapping
Commentary (Continued)

5.3
Test Increment

Cleanroom is the only method to support statistical
certification of software. Cleanroom certification views
software testing as a statistical experiment, and yields a

scientifically valid estimate of reliability.

5.4
Review Increment Work

Products

Objectory and Cleanroom are the only processes to
identify protocols and review criteria for reviewing the
results of software increments.

The Shared Leveraging of Cleanroom and OO Techniques

Shared Fundamentals

Cleanroom software engineering and the studied OO methods are
complementary. There is broad agreement that:

. objects are defined by their external behavior and their internal data and
access programs;

• systems are defined by their external usage scenarios and heir internal
organization of object accesses; and

• abstraction, decomposition, hierarchy, and other strategies are all important in
identifying and relating the parts of a problem.

Furthermore, there is no more difference between a particular OO method and
Cleanroom than there is between the particular OO methods studied - in some
cases the differences are less. There may be more difference between the
Objectory and Shlaer-Mellor approaches, for example, than between Objectory
and Cleanroom.

Difference in Focus

The OO and Cleanroom methods focus on different aspects of software quality.
OO is generally focused on reusability, and Cleanroom is generally focused on
reliability. Indeed, all OO and Cleanroom practitioners are concerned with both
these aspects of software quality and more, but the aforementioned difference in
focus is significant.

02/06/96 at 01:13 PM STC'96 Page 13

The study report, the "Guide to Integration of Object-Oriented Methods and
Cleanroom Software Engineering" is not about resolving conflict between 00 and
Cleanroom, but about identifying the leverage that each can find in an explicit
alliance with the other.

00 Leverage for Cleanroom

For those whose base is Cleanroom, the alliance is simple: add the 00 analysis
phase activities (in any of the methods in this Guide) to the Cleanroom process
prior to Specification. The "thought models" in 00 analysis aid in problem
understanding and will set the stage for a rigorous Cleanroom specification.

Cleanroom Leverage for 00

For those whose base is an 00 method, the alliance with Cleanroom has several
points of leverage. The following aspects of Cleanroom are not typically found in
00 processes, but could be included to support the studied methods:

• a system-level black-box specification
. a black-box specification of every object as a mathematical function

. system decomposition under the mathematical principle of referential
transparency

. team verification that an object's implementation is a correct realization of the
object's mathematical function specification

. use of usage models for statistical test case generation

• statistically valid reliability certification

• process review and improvement.

For more detailed discussion of these leverage points, see section III of [Ett95].

Potential Cleanroom Leverage for OO

The alliance with Cleanroom may have other points of leverage. But, these must
be investigated further before their integration can be recommended. They are
identified here because they were not examined or identified in the study report:

. use of Cleanroom certification techniques to certify design models

. use of Cleanroom certification techniques to independently certify software
objects with the potential for widespread reuse, or access volume, i.e., a
software component is frequently accessed by some or all of the components
of a system

• analysis of defined objects for transaction closure.

02/06/96 at 01:13 PM STC'96 Page 14

Certifying Design Models. Although this would require further analysis and
investigation, usage models constructed to support statistical test-case
generation could be used both, (1) to support certification testing of software
releases and (2) to certify an OO machine-independent logical design of a
proposed system. Such testing could support certification of design models
that represent the processing a system is to perform, such as a Shlaer-Mellor
OO analysis model. This is especially important where these OO design
models will be processed by CASE tools and translated into code.

Certifying Reusable or High-Use Software Objects. Usage models are
developed to support the testing of a system on the basis of its intended use.
All objects have users and exhibit black-box behavior. As a result, usage
models could be independently prepared for software objects, and they could
be independently certified. In the case where an object is to be reused, the
accompanying usage model would support independent verification of the
object's expected reliability.

Analyzing Objects for Transaction Closure. Regardless of whether box-
structure techniques are employed to specify and design software objects, the
Cleanroom concept of transaction closure is an important principle against
which a software object could be analyzed. To examine a software object for
transaction closure, one must determine first, whether the transactions the
software object must process are sufficient to generate all required state data,
and second, whether the state data within the object is sufficient to support all
of the transactions. The second condition may be true only if the software
object encapsulates the message (stimulus) history that is needed to process
its transactions.

The Limits of Integration

Each of the methods addressed in [Ett95] has its own conceptual foundation:

. For Booch, "software growing" occurs through the iterative and opportunistic
interplay of macro and micro processes in "round-trip Gestalt design."

. In Objectory, a set of "use cases" that define all system behaviors is
elaborated to a fully traceable design that is implemented through staged
incremental development.

. In Shlaer-Mellor, domain partitioning drives analysis activity, and domain-
specific OO analysis models are translated to code using generic architectural
components ("archetypes") [Shlaer93].

02/06/96 at 01:13 PM STC'96 Page 15

• In Cleanroom, engineering formalisms underlie incremental development;
mathematical formalisms underlie specification, design, and correctness
verification, and statistical formalisms underlie certification testing.

Integration (or any other form of combination) of the processes must occur with
the same concern for conceptual integrity that must be observed in software
product development.

Conclusions

A variety of approaches to integrating 00 and Cleanroom are offered in [Ett95].
It was not a study task to remake or modify the methods developed by their
distinguished authors. It was a study task to explore integration possibilities.
From the work performed on the study, a conclusion about the viability of the
approaches may be drawn. [Ett95] states: "Cleanroom is more like 00 than 00
is like Cleanroom, from the perspective of OO's underlying software fundamentals
of abstraction, encapsulation, modularity, and hierarchy. It would be far easier to
add an 00 analysis to the front-end of a Cleanroom process than to insert the
key Cleanroom characteristics (above) into an OO process."

Despite the complementary relationship between Cleanroom and 00 methods,
and processes derived from them, there are adoption barriers to this integration.
These adoption barriers do not appear to be technical. But because Cleanroom
engineering is new to many object-oriented method practitioners, compelling
evidence must be provided that demonstrates that the integration of Cleanroom
and 00 methods will lead to highly reliable and reusable systems. These
barriers include:

. the lack of a head-to-head comparison and analysis of the results from
employing the studied 00 methods and Cleanroom to develop complete
solutions to a standard problem

. the lack of a formal analysis of the conceptual model upon which each 00
method is based. It may only be through an understanding of the conceptual
and mathematical basis of each 00 method, that a determination can be
made whether fundamental Cleanroom concepts may be practically integrated
with the OO method, without re-engineering the method.

. the lack of support by tool vendors for Cleanroom software engineering
techniques.

Addressing the first two items in the list may provide the justification for CASE
tool vendors to consider providing support for Cleanroom Software Engineering.
But, work needs to be performed to demonstrate to the 00 community, on the
basis of practical results, that such integration is both necessary and practical.
Where Cleanroom techniques may be easily added to the stated 00 methods,

02/06/96 at 01:13 PM STC'96 Page 16

technique integration may depend on successful demonstration, cost-benefit
analysis, and the desire and will to improve software quality.

IA09 Report Availability

The final STARS Task IA09 Report, "A Guide to Integration of Object-Oriented
Methods and Cleanroom Software Engineering," will be available for review on
the World Wide Web, on March 1, 1996. The URL for the report will be:

http://source.asset.com/stars/loral/cleanroom/oo/guide.html

The reader also may wish to review the STARS Cleanroom tutorial, also available
for review on the World Wide Web. The URL for this tutorial is:

http://source.asset.com/stars/loral/cleanroom/tutorial/cleanroom.html

References

[Booch94]

[Cobb90]

[Cosmo94]

[Ett95]

[Hausler94]

[Hevner93]

Booch, Grady. Object-Oriented Analysis and Design with
Applications. Benjamin-Cummings. 1994.

Cobb, Richard, and Harlan Mills. "Engineering Software under
Statistical Quality Control." IEEE Software. November 1990.

Cosmo, Henrick. Black-box specification Language for
Software Systems. Masters Thesis. Department of
Communication Systems. Lund University, Sweden. 1994.

Ett, William and Carmen Trammell. A Guide to Integration of
Object-Oriented Methods and Cleanroom Software
Engineering. STARS Task Final - Comment Draft.
Federal Systems, December 22, 1995.

Loral

Hausier, Philip, Richard Linger, and Carmen Trammell.
"Adopting Cleanroom Software Engineering with a Phased
Approach." IBM Systems Journal, Volume 33, Number 1,
1994.

Hevner, Alan and Harlan Mills. "Box-Structured Development
Method for System Development with Objects." IBM Systems
Journal. Volume 32, Number 2, 1993.

02/06/96 at 01:13 PM STC'96 Page 17

[Jacobson92]

[Mills86]

[Perry90]

[Poore95]

[Shlaer92]

[Shlaer93]

[Whittaker93]

Jacobson, Ivar, Magnus Christerson, M. Jonsson, and G.
Overgaard., Object-Oriented Software Engineering. Addison-
Wesley, 1992.

Mills, Harlan, Richard Linger and Alan Hevner. Principles of
Information Systems Analysis and Design. Academic Press.
1986.

Perry, Dewayne and Gail Kaiser, "Adequate Testing and
Object-Oriented Programming." Journal of Object-Oriented
Programming. Volume 2, Number 5, January-February, 1990.

Poore, Jesse. "Usage Testing as Engineering Practice."
European International Symposium on Cleanroom Software
Engineering. Berlin, Germany, March 28-29, 1995.

Shlaer, Sally and Steve Mellor Object-Oriented Lifecvcles:
Modeling the World in States. Prentice-Hall. 1992.

Shlaer, Sally and Steve. Mellor, "The Shlaer-Mellor Method,"
Project Technology, Inc., Technical Report, 1993.
Whittaker, James and Jesse Poore. "Markov Analysis of
Software Specifications." ACM Transactions on Software
Engineering and Methodology, Volume 2, Number 1, January
1993.

Acknowledgments

This paper is based in part from work performed on the ARPA STARS Task IA09:
"Integration of Cleanroom into Object-oriented Specification and Design
Methods," performed by Loral Federal Systems, Software Engineering
Technology, Incorporated and the University of Tennessee's Software Quality
Research Laboratory.

The author wishes to express his appreciation to Linda Brown, ARPA STARS
Program Manager, and the Department of Defense's C3I Office for their support
of this work. The author also wishes to express his appreciation to Dr. Carmen
Trammell for her collaboration in the IA09 study. Finally, the author wishes to
thank Dr. Trammell and STARS Program Manager Dave Ceely for their excellent
comments on earlier drafts of this paper.

02/06/96 at 01:13 PM STC'96 Page 18

Biography

William H. Ett

William H. Ett is an advisory programmer for Loral Federal Systems, assigned to
the ARPA STARS Program. During STARS, Mr. Ett has been actively involved in
process and SEE integration, and helped transfer STARS process technology to
the STARS/Air Force Demonstration Project. Mr. Ett also was involved in several
Cleanroom related tasks on STARS. He was the principal architect for the
STARS Cleanroom Engineering Process Assistant and was the Loral technical
lead for the STARS Cleanroom Object-Orientation Integration Study.

Mr. Ett has held systems and software engineering positions in the Government
and private sectors, including the Navy Bureau of Medicine and Surgery,
Morrison-Knudsen, MA/COM, and IBM Federal Systems Company. Mr. Ett's
work experiences include the management, design and development of
information systems, development of knowledge-based systems and tools to
facilitate knowledge acquisition, and the design, development and integration of
environments to support software process management.

He holds a B.S. in Computer Science and Information Systems from the
University of Maryland and has done graduate work at George Washington
University in Operations Research. Mr. Ett is a member of the ACM and IEEE.

William H. Ett
Loral Federal Systems

700 North Frederick Avenue
Gaithersburg, MD 20879
Voice: (301)240-6322

Fax: (301)240-6073
Internet: ettb@lfs.loral.com.

02/06/96 at 01:13 PM STC'96 Page 19

Appendix A: Cleanroom/Method Integration Discussion Sample

Included is a sample page from [Ett95], illustrating the mapping of Objectory
activities to Cleanroom activities, and the commentary regarding Cleanroom-
Objectory integration.

02/06/96 at 01:13 PM STC'96 Page 20

CLEANROOM EXTENSIONS TO THE OBJECTORY PROCESS

The Objectory process i$ given in the left column as the "base" process, and the Cleanroom
process in the right column is mapped to the Objectory process. Comments that straddle the col-
umns are recommended Cleanroom extensions to Objectory. Cleanroom extensions are given
immediately after the Objectory activity to which they apply.

OBJECTORY PROCESS CLEANROOM PROCESS

1. Project Planning

1.1 Objectory Process Configuration
Development Case Description

1.2 Objectory/Project Management
Integration
Tailored Project Management Process

1.3 Objectory/Configuration
Management Integration
Tailored Configuration Management
Process

1.4 Project Scoping

1.5 Project Organization
Project Technical Staffing Requirements

1.6 Project Planning
Project Plan

1.7 Development Case Installation
Trained Personnel

1. Project Management

Process References

1.5 Tasking
Tasking Records

1.3 Schedule Development and
Maintenance
Project Schedule

1.4 Training

1.1 Customer Interaction
Customer Requirements

1.2 Process Control
Process Control Standards

Cleanroom extension: Include Cleanroom Process Control ideas in project management
process.

Rationale: Objectory has comprehensive instructions for tailoring the process for a
software project. Provisions for process control would be a worthwhile addition.

Appendix B: Generic OO/Cleanroom Integration Discussion Sample

Included is a sample page from [Ett95], illustrating the matrix prepared to discuss
the coverage provided by each of the three methods and Cleanroom to support a
generic process activity and showing where one or more of the selected methods
are the most suitable candidates for preparing an integrated generic object-
oriented process.

02/06/96 at 01:13 PM STC'96 Page 21

GENERIC OBJECT-ORIENTED CLEANROOM PROCESS

The Generic Process is given in the left column, and the other processes in the rightmost
four columns are mapped to the Generic Process. The shaded activities in the Generic Process
column represent the work to be done, and the shaded work products in the other columns
represent options for performing the work. Comments that straddle the columns provide
perspective on the options.

BOOCH OBJECTORY SHLAER/MELLOR CLEANROOM

1.
Conceptualiza-
tion

Prestudy;
Feasibility study

2.1
Requirements
Analysis
([3], p. 443)

Micro Process
cycle to implement
concept prototype

Develop &
evaluate project
needs and ideas;
([3], p. 444)

1.1
Customer
Interaction

Executable
Prototype requirements

\ Needs statemelri;.

Hi

There is nothing object-oriented about concept definition. It is an important step, however, in
establishing the context for systems analysis. Booch's "Vision of a Project's Requirements,"
and Objectory and Cleanroom early requirements statements all address concept definition.

^'^ÜI^^jgpÄ
2.
Analysis

2.
Analysis

1.
Analysis

I Analyze Problem i
Domain V

2.1
Domain Analysis

2.1
Requirements
Analysis

1.1
Partition the
System into
Domains

1.2.1
Build Object
Information
Model

2.1.5
Top-Level
Usage Specifica-
tion Development

